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A.tract-The objective of this paper is to develop an appropriate form of the theory of a Cosserat
point (ASME J. Appl. Mech. 51, 368 (1985)~ which can be used to formulate the numerical solution
of the three-dimensional motion of a non·linear elastic string. The string is divided into N material
parts, each of which is modelled as a Cosserat point with its own equations of motion and
constitutive equations. Then the motion ofeach Cosserat point is coupled with that ofits neiJhbours
and boundary conditions are introduced to obtain a system of ordinary dift'erential equations of
time only which describe the motion of the string. Two examples ofa rotating striDa are considered.
For each example we show that director inertia (rotary inertia) is sipific:ant and that the Cosserat
solution converges rapidly to the exact solution developed by Rosenau and Rubin (Pltys. Rev. A31.
3480 (1985».

INTRODUCTION

Recently[I], the theory of Cosserat point was developed to analyse a body which is
essentially a material point surrounded by some finite volume. This theory has been
successfully used to formulate the numerical solution of one-dimensional continuum
problems[2] and to analyse free vibrations of a rectangular parallelepiped[3]. In Ref. [2]
the continuum was restricted to move in a single fixed direction and the non-linear motion
of a bar was analysed.

The objective of this paper is to develop a theory of a Cosserat point which is
applicable to the numerical solution of the non-linear three-dimensional motion of a string.
The string is divided into N material parts, each of which is modelled as a Cosserat point
with its own kinematics, kinetics and constitutive equations. A system of ordinary
differential equations of time only, which describe the motion of the string. are obtained
by coupling the motion of each Cosserat point to that of its neighbours and by imposing
appropriate boundary conditions at the ends of the string. Actually, the string is modelled
as a chain of vectors d1 (1 = 1,2, ... , N) called directors (Fig. 1), each of which is allowed
to move three-dimensionally in space.

In the following sections we discuss the basic equations of the theory of a Cosserat
point developed by a direct approach. For clarity, we develop the same equations in
Appendix A starting with the basic description of a string as a Cosserat curve. The utility
of the theory is demonstrated by considering two examples of a non-linear elastic string.
The first example analyses a rotating closed circular string and the second example analyses
a rotating straight string. For each example the Cosserat solution is compared with the
exact solution which was developed by Rosenau and Rubin[4] and which is recorded in
Appendices Band C.

It is natural to ask what advantages a numerical solution procedure based on the
theory of a Cosserat point has over other discretization techniques. In this reprd, we
emphasize that the theory of a Cosserat point is a continuum model which paraUels the
three-dimensional theory in that it is inherently nonlinear. valid for arbitrary materials.
and invariant under superposed rigid body motions. Other procedures used to discretize
a set of partial differential equations mayor may not be endowed with these features at
the element level. Obviously, for certain simple problems such as that considered by
Rubin[2]. the Cosserat procedures will produce similar results to those ofother procedures.
However. it is expected that once Cosserat points are developed for two- and three­
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ec,..
Fig. 1. Sketch of a strilll modcUcd by N Coascrat points. The lth Coascrat point is characterized

by its: position f
"

director d, • and end points r, and r, + \_

dimensional problems they will provide guidance for developing potentially better finite
elements or at least for examining the advantages of one finite element over another.
Unfortunately, the analysis of these issues must await further theoretical developments.

BASIC EQUATIONS (DIRECT APPROACH)

Here, we are concerned with developing a theory of a Cosserat point which can be
used to formulate the numerical solution of non-linear string problems. Basic:a11y, we divide
the string into N material parts and model each part as a Cosserat point. In the present
configuration, at time t, the lth Cosserat point is characterized by its position f,(t), relative
to the origin of a fixed coordinate. system, and by a director d,(t) which detennines the
length and orientation of the Cosserat point (Fig. 1). The position vector f , and director
d, are each three-dimensional vector functions of time only which in the reference
configuration acquire the values f , =I, and d, = D, . A motion of the Cosserat point is
defined byt

i', = f,(t), (la, b)

(Ie)

where condition (Ie) ensures that the length of the Cosserat point never vanishes. The
velocity vI and director velocity w, are then calculated by

W/ = el, (2a, b)

where a superposed dot denotes time differentiation. Furthermore, the ends of the Ith
Cosserat point are located by the position vectors r,(t) and ri+l(t) such that (Fig. 1)

(3)

tTherc is no summation over repeated capital indices which arc used to indicate, say, the Ith Cosserat
point.
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We now tum to a statement of the conservation and balance laws of the lth Cosserat
point and, with reference to the present configuration, define the following quantities: the
mass mAt) of the point; the contact force "I1(t) and contact momentt mI1(t) applied to the
end f,; the contact force Du(t) and contact moment mu(t) applied to the end f,. 1; the
assigned external force f,(t) and assigned external director couple IAt); the intrinsic director
couple kAt) which makes no contribution to the supply of angular momentum; and the
constant inertia coefficients y}1 , y}l. With the above definitions, we postulate the following
conservation and balance laws for the Cosserat point under consideration:

(4a)

(4b)

(4c::).

and

:t [f, x m,(v, + Y}"/) + d, X (y}VI + y]1"/)]

=f , X [f, + DIl + Du] + d, x [I, + mI1 + mu]. (5)

Equation (4a) represents the conservation ofmass, eqn (4b) the balance oflinear momentum,
eqn (4c::) the balance of director momentum, and eqn (5) the balance of angular momentum.
Now, using eqns (4aH4c::), the balance of angular momentum (5) may be written in the
form

(6)

which states that the intrinsic director couple k, is parallel to d, so that

(7)

where the function k, must be specified by a constitutive equation.
The equations of motion,' eqns (4) and (5), may be obtained directly from the

development in Ref. [1] by suppressing the effect of the directors d2 and d3 as well as their
associated kinetic quantities. They also can be obtained by starting with a three-dimensional
description of the string and introducing appropriate kinematic assumptions. Still another
approach is to start with a model of a string as a Cosserat curve and introduce appropriate
kinematic assumptions. This latter approach is described in detail in Appendix A. Here,
we merely recall that material points of the string are identified by a convected coordinate
e and are located by the position vector r*(e, t~ The material part associated with the lth
Cosserat point occupies the region defined by ee [~" ',. 1]' Now, to establish a one-to­
one correspondence with this theory of a Cosserat point and the description of the string
as a Cosserat curve we introduce the kinematic assumption (A4~ It follows that tbe ends
f, and f/+ 1 of the ltb Cosserat point are given by

(8a,b)

t The use of the words moment and couple ariIe because mlJ. m12 and ., are related to forces times the
coordinate 8, (see eqns (A6». Here 8, is unitless so these quantities have the units of force.
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(9)f I = ~(rI + r/+ 1)'

One of the main advantages of using the direct approach over approximations from
either the three-dimensional theory or the theory of a Cosserat curve is realized in the
discussion of constitutive equations. For the direct approach we follow the procedures
used in the three-dimensional theory and define the mechanical power PI by

PI = (fI'VI + lI'WI ) + (nIl 'YI + mIl 'WI )

+ (nI2'vI + mI2 'WI)

(10)

Using eqns (Ie), (4) and (7) expression (10) for the mechanical power PI can be rewritten
in the reduced form

(11)

For a non-linear elastic Cosserat point we assume the existence of a strain energy function
"'I such that

PI = ~I' (12a, b)

where DI is the reference value of dI . With the help of eqns (11) and (12), and assuming
that for an elastic material kI depends only on dI and DI , we deduce that

a,pI
kI = ad

I
' (13)

Within the context of this description of a Cosserat point we observe that the assigned
force f I and director couple II include contributions from external body forces applied to
material points of the string as well as from surface tractions applied to the lateral surface
of the string. Each of the quantities introduced for the Cosserat point is related directly
to the description of the Cosserat curve (see eqns (A6)). In particular we recall (eqns (A6f)
and (A6g)) that for this simple theory the contact moments mil and mn ar~ determined
by

(14a, b)

Furthermore, if in the reference configuration the mass density p~ (mass per unit length)
of the string is constant and A* in eqn (A3a) equals unity then from eqns (A3a), (A4b) and
(A6a)-(A6c) we obtain the results

y} =0,
1

Y
11 _

I - 12 (15a-c)

where ~J now has the units of length. The inertia coefficient y} 1 is associated with director
inertia which is more commonly called rotary inertia in rod and shell theory. Since we
wish to examine the influence of director inertia on the solution of the examples considered
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later it is more convenient to write
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0(
yJ1 =­

12
(0(=0,1) (16)

where for 0( = 1 director inertia is included and for 0( = 0 it is excluded.

SOLUTION PROCEDURE

An approximate solution for the three-dimensional motion of a strina can be obtained
by modelling the strina as a chain of N Cosserat points (Fia.1), with end points located
by 'I (I = 1,2, ... , N + 1). Once a constitutive equation is specified for kl in eqn (13) eqns
(4) characterize the motion of the Ith Cosserat point. Followina the procedure described
in Ref. [2] the motion of the Ith Cosserat point may be coupled with the motion of its
neighbours by introducing the (N - 1) kinetic coupling equations

(I = 2, 3, ... ,N). (17)

Additional kinematic coupling is implied by relations (3) and (9).
For an arbitrary constitutive equation, eqn (13), and arbitrary values of the assigned

force and assigned director couple the equations of motion, cqns (4), can be solved for the
contact forces DIl and D12' In particular, for a string which is uniform in its reference
configuration we may substitute eqns (3), (9), (14), (ISb) and (16) into eqns (4) to obtain

(18a)

(18b)

Then, substituting eqns (18) into eqn (17) we deduce N - 1 coupling equations of the form

1= 2,3, ... ,N (19)

to restrict the N + 1 unknowns rrtt). The remaining two equations are specified by
boundary conditions.

Three types of boundary value problems can be formulated and these are described
in detail in Ref. [2]. Here we merely record the boundary conditions which require
specification of:

and

either rl(t) or Du(t) (20a)

(20b)

Once the assigned force (I' assigned director couple II' and a constitutive equation for kl
are specified, eqns (19) and appropriate forms of (20a) and (20b) may be solved for the
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N + 1 unknowns fI(t) subject to the initial conditions

(l = 1, 2, ...• N + 1) (2Ia, b)

where RI are the reference values of f I , and VI and VI are the initial displacement and
velocity of the point f/, respectively. The displacement u/(t) for arbitrary time is given by

(22)

After f/ are known, the contact forces 0Il and 0/2 can be determined by eqns (18).
For the examples discussed in the next sections we consider a homogeneous elastic

string which in its reference configuration is straight, of length L, and force free. Also, the
string is divided into N equal parts. It follows that we may specify

L
D/ =­

N'
~/ = (I - I)L,

N
(I = 1,2, ... ,N + 1) (23a-c)

where e l is one of the unit base vectors of a fixed Cartesian coordinate system with base
vectors ei (i = 1,2,3). Furthermore, we wish to specify the constitutive equation, eqn (13),
of the Cosserat point to be consistent with eqn (A9) of the string. To do this it suffices to
consider the simple static problem of uniform tension T* in the string in the absence of
body force. Then, eqns (18)-(20) and (A8c) yield the results

(l = 1, 2, ... , N). (24a-c)

Now, using eqns (1), (23), (AI) and (A4) we have

(l = 1,2, ... ,N). (25a, b)

Thus, with the help of eqns (7), (24), (25) and (A9) we obtain the constitutive equation

(26)

Of course, since the material is elastic this constitutive equation is also valid for dynamic
problems.

EXAMPLE: A ROTATING CIRCULAR STRING

In this section we consider the example of a closed circular string which rotates in
the e l -e2 plane about the e3 axis with angular velocity t1(t) measured positive in the
counter-clockwise direction. The exact solution of this problem was obtained by Rosenau
and Rubin[4] and is recorded in Appendix B for convenience. Here, we model the string
as a closed chain of N (N ~ 3) directors d/ (1 = 1, 2, ... , N) which are associated with N
Cosserat points. Let e, and e, be unit base vectors of a polar coordinate system defined
by

e,(O) = cosOe l + sinOe2

e,f.,O) = -sinOe l + cosOe2'

(27a)

(27b)
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~6

Fig. 2. Model of a circular string usinl apt Cosserat points showinl: the directon ., {I - I,
2, .. " 8~ the end points r l and fl; tbe aqle PN (N - 8) between the vecton fl and fl; and the anale

8(t) between the vector f l and the fixed 'I axis.

Then, for this problem the vectors fl and rI+ 1 may be written in the forms

(28a, b)

<Prtt) == 8(t) + (I - l)fJN (28c)

where <PI(t) is the angle between the vector fl and the el axis, r~t) is the length of each
vector f" and fJN is the constant angle between the vectors rl and fI+l (Fig. 2). From the
geometry of the closed chain of N directors it follows that

27t
fJN ==­

N
(N ~ 3) (29a, b)

where we have used eqns (lc) and (3).
Now, in the absence of assigned force (fl == 0) and assigned director couple (11 == 0)

and with the help of eqns (7), (15), (23), (26), (28) and (29), it may be shown that the N - 1
coupling equations (19) yield two scalar equations:

2r~ +ril == 0

where the stretch a and the function f(fJN' «) are defined by

(3Oa)

(30b)

da ==..J!..
D/ (31a, b)
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Furthermore, it can be shown that eqns (18) yield

where the function h(PN' ex) is defined by

6cos PN
2

h(PN' ex) = =:'[(3=--+-ex):-+---:-::(3-_-ex"7")-co-s-=-PN-=]'

(32a)

(32b)

(33)

Using eqns (28), (29b) and (32) it follows that this solution automatically satisfies the two
boundary conditions

(34a, b)

which require the chain of directors to be closed.
To compare the Cosserat solution with the exact solution of Appendix B we note

that, with the help of eqns (29a) and (31a), eqns (30) may be written in terms of the stretch
a and eqn (30b) may be integrated to obtain

(35a)

(35b)

where b3 is a constant of integration. Given values for p~, L, P, N (N ~ 3), a functional
form for the constitutive equation g*(a), and given initial conditions for a, d, 9, e, the
constant b3 in eqn (35b) is determined and the ordinary differential equations (35) may be
integrated to obtain a(t), (J(t). Then the contact forces Dl1' 0/2 can be obtained form eqns
(32).

Physically, eqn (35b) represents conservation of angular momentum about the e3 axis.
Also, the results, eqns (32a) and (32b), indicate that the contact forces 011 and D/2 always
act in the tangential direction (as they should), even though the directors d] are tangent
to the circular string only in the limit that N approaches infinity. Comparing eqns (35a)
and (35b) with eqns (B2a) and (B2b), respectively, we observe that for the same initial
conditions and an arbitrary constitutive equation for g*, eqns (35a) and (35b)will predict
exact values for the functions d(t) and (J(t) if the functionj(PN'ex) equals unity. Furthermore,
we observe from eqns (32) that the magnitude of the contact force will also be exact if the
function h(f3N' ex) equals unity. Therefore, the accuracy of the Cosserat solution is controlled
by the functions j(PN' a) and h(PN' a). Using eqns (29b), (31 b) and (33) we have plotted the
values of these functions in Fig. 3 when director inertia is included (ex = 1) and excluded
(a = 0). The results in the figure show that the Cosserat solution is quite accurate when
the string is modelled by as few as 10 directors and that the effect of director inertia is
significant for the rather crude approximations of the string (low values of N).

EXAMPLE: A ROTATING STRAIGHT STRING

In this section we consider the example of a straight string which rotates in the e1­

ez plane about the e3 axis with constant angular velocity w. The end e1 = 0 is fixed at the
origin and the end eN+ 1 = L is free of contact force. The exact solution of this problem
was obtained by Rosenau and Rubin[4] and is recorded in Appendix C for convenience.
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Fig. 3. Rotating circular string: (a) plots of the function !(PN, a.) defined in eqn (3Ib); and (b) plots
of the function ~PN'a.) defined in eqn (33~ when director inertia is included (a. = I) and excluded

(a. = 0). N is the number of Cosserat points used to model the string.

Here, we model the string as a chain of N (N ~ 1) directors dl (I = 1,2, .. . ,N) which are
associated with N Cosserat points. For this problem the vectors rl and r/+ 1 may be written
in the forms

() =wt

(36a, b)

(36c)

where 8(t) is the angle between the vectors rl and the e1 axis, the base vector e, is defined
by eqn (27a), and the constants rl are determined by the solution. For later convenience
the displacements VI may be defined by

(37)

where el is the value of rl in the reference configuration and is determined by eqn (23b).
Now, in the absence of assigned force (fl = 0) and assigned director couple (II = 0)

and with the help of eqns (7), (1S), (23), (26) and (36), it may be s1)own that the N - 1
coupling equations (19) yield

)'1
g-(O/) - g-(OI-l) + 12LN[(3 -lX)rl_l + 2(3 + lX)rl + (3 -lX)rl_ 1] = 0

(1 = 2,3, ... ,N) (38)

where the stretch 01 is determined by

(39a, b)
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and where the constant y is a non-dimensionalized angular velocity defined by

(40)

Substituting eqn (39b) and the constitutive equation, eqn (AI0), into eqn (38) we obtain
the equations

a = _ [(3 - (X)y2J [{(3 - (X)y2}2 b Jl/2
1 12N2 + 12N2 + 1

(4Ia)

1= 2,3, ... ,N (41b)

where we have used the condition that the stretch al is positive. The coupling equations
(41a) represent N - 1 equations to restrict the N + 1 unknowns rl' The remaining two
equations to restrict rl are boundary conditions of the form

D"'2 = o. (42a, b)

With the help of eqns (7), (15), (18), (23), (26), (36), (39) and (AI4) the boundary conditions
(42a) and (42b) become

(3 + (X)y2 ( y2 )
a~-2 12N2 a",- 1 + NLr", =0

and the contact forces D/1 and 0/2 in eqns (18a) and (18b) may be expressed as

(43a, b)

(44a, b)

(44c)

(I = I, 2, ... , N). (44<1)

When the string is modelled by a single Cosserat point (N = 1) there are no coupling
equations and the solution is determined by eqns (39b), (43a), (43b), (44c) and (44<1) so that

= (3 + (X)y2 [{(3 + (X)y2}2 IJ1 /2
a1 12 + 12 +

(45a, b)

(45c)

"12 =o. (45d,e)

To determine the solution when the string is modelled by more than one Cosserat point
(N) 1) we: (a) guess a value for a 1; (b) use eqns (39b), (41a), (41b) and (43a) to determine
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Table 1. Rotating straight string

(N = 1)
Cosserat solution

Exact including
solution director inertia

(N = I)
Cosserat solution

excluding
director inertia

l'

0.1
1.0

10.0

u·(L) T·(O) U2 -nil U2 -n..
L p- u·(L) T·(O) u·(L) T·(O)

0.0033400 0.0050209 0.9997 0.9992 0.7494 0.9983
0.39773 0.74528 0.9741 0.9308 0.7060 0.8593

68.317 4018.8 0.9614 0.8296 0.7175 0.6223

10
UII..

T
60

50

."" ...._::=:_...... ZI

r'"
I

I
I

I
I,

(a)

4000

-nil
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3000

2500

j(--, ...
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I
I
I
I
I
I
I, ( b)
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- INCLUOES DIRECTOR
INERTIA

---- EXCLlI)ES DIRECTOR
INERTIA

2000
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500

- INCLUDES DlREtTOR
INERTIA

---- EXCLUDES DIRECTOR
INERTIA

o OL-_~_..L-_~-~_...J"
080

N N
Fia. 4. Large deformation (y - 10.0) of a rotalina straight string: (a) plots of the displacement UN + 1

at the free end (~N+ 1 - L~ and (b) plots of the contact force all at the fixed end (~ - O~ when
director inertia is included (IX = 1) and excluded (IX - 0). N is the number of Cosserat points used

to model the strina.

values for rl and Dl (1 = 2, 3, ... , N); and (c) iterate on the guess for al until eqn (43b) is
satisfied. After values for rl and al are determined we calculate the contact forces DI1 and
D12 from eqns (44).

The solution was obtained for three values of the normalized anaular velocity "I
corresponding to small deformation ("I "" 0.1), moderate deformation (y "" 1.0) and large
deformation ("I "" 10.0). For each case we modelled the string with 1-10 Cosserat points.
The largest errors in the prediction of the displacement and the tension were obtained at
the free ('N+ 1 "" L) and the fixed end ('1 = 0), respectively. Therefore, in Table 1 we have
presented values for these quantities predicted by the exact solution of Appendix C and
the solution using a single Cosserat point. From Table 1 we observe that the simple
Cosserat solution which includes director inertia is very accurate even for moderate
deformation, and that the influence of director inertia is significant. The fast rate of
convergence of the Cosserat solution for larae deformation ("I "" 10.0) is shown in Fig. 4.
Also, the spatial variation of the displacement and tension (n is the magnitude of the
contact force) for large deformation ("I "" 10.0) is shown in Fig. 5 for three values of N
(N "" 1,2, 10). Finally, we note that the curves in Fig. S for N == 10 are nearly indiItinpiah­
able from those predicted by the exact solution of Appendix C.
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~l (b)

60 (a) J~t
50 2500

1

40 2000~
30 1500

20 1000

SOO

0
0 1.0

Fig. 5. Large deformation (y = 10.0) of a rotating straight string: (a) plots of the displacement u;
and (b) plots of the tension (n is the magnitude of the contact force). N is the number of Cosserat

points used to model the string and director inertia is included (a = 1).
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APPENDIX A: DERIVATION FROM THE THEORY OF A COSSERAT CURVE

In this appendix we briefly review an appropriate form of the theory of a Cosserat curve which models a
strin,. ,After introducing a kinematic approximation of the position vector as well asa number of definitions we
derive the equations of motion of a theory of a Cosserat point appropriate to model a string.

For our purposes we note tbft a string can be modelled usin, a theory of a Cosserat curve which is obtained
by suppressing the eft'ect of the directors in a Cosserat description of a rod[S,6]. WithreCerence te) the present
configuration, let material points of the strin, be identified by the convected coordinate ~ and located by the
position vector r*(~,t). Then a motion of the string is defined byt

or*.-.-
o~ , (Ala-c)

where .* is a tangent vector to the string curve and a* is the stretch associated with the space curve. The velocity
,* of the material point is given by

(A2)

tThroughout this paper we use a superposed (*) to indicate that the quantity is associated with the
description ofthe Cosserat curve.
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where a superpo&ed dot denotes material time dill'erentiatioithoklinl ~ fixed.
Now the equations of conservation of mass. balance of linear momentum, balance of angular momentum.

and a definition of the mechanical power p. may be written in the forms

A.. =A.·eel =p·a· =p~A·

d d
-[A.·(r· x v·)] =r· x A..'" + -Cr· x.·]
dt d~

d d[1 ]p. = A.·"'·v· + -[a··v·] - - -A.·v··v·
d~ dt 2

(A3a)

(A3b)

(A3c)

(A3d)

respectively, where p·(~,t) is the mass density (mass per unit Ienath) in the present confiJUration; p~ and A· are
the reference values of p. and a·. respectively; ••(~, t) is the contact force; and ,.. is the assiJlled external force.

To derive equations of the fonns of eqns (4), (S) and (11) associated with the theory of a Cosserat point, we
assume that the position vector r· depends at most linearly on the coordinate ~. Hence. it admits the representation

(A4a)

(A4b.c)9 (2~ - ~,- ~1+I)
, = 2(~, + 1 - ~,) ,

where i, and d, are the same quantities introduced in the main text of the paper, and where ~, is defined so that
9, ... ±1/2 on the ends ~ ... ~,+ 1 and ~,. respectively. In view of eqns (A2) and (A4a) the velocity v· may be
represented in the fonn

v· = " + 9,,,, (AS)

where" and", are defined in eqns (2a) and (2b), respectively. Next. let us relate the quantities m,. y]1 , y]l. f,.
au.au. mu , mu,I,. k, and P, to the quantities defined above through the equations:

(A6a,b)

(A6c)

(A6d)

(A6e)

(A6f)

(A6g)

(A6h.i)

(A6j.k)

Now subltitutin. the reptelClltations (A4a) and (AS) into eqns (A3) and uainJ definitions (A6) we can derive the
equatiofta or co..ervaUon ormass (4a), balance of linear momentum (4b), baJancc or anplar momentum (5), and
the mechanical power expression (10), by integrating over the material l'elion ~E(~"~1+a. The director
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momentum eqn (4c) can be obtained by multiplying eqn (A3b) by 0, and integrating over the material region
~ E [~,,~, + I] to obtain

(
I )[",- o*d~

~,+ 1 -~, ~, .
(A7)

Then, substituting eqn (AS) into eqn (A7) and using definitions (A6) we derive eqn (4c).
For an elastic material we assume the existence of a strain energy function "'* and it can be shown that

0* = ria*)-\0- '

p* = 0* .,* = ).*"'*

r* = ).* o.p*
ca*

(ASa,b)

(A8c,d)

where we note that "'* also depends on ~ when the string is inhomogeneous. Using these results it is relatively
simple to show that eqn (ASe) ensures that the anaular momentum eqn (A3c:) is automatically satisfied. Also, by
substituting eqn (ASe) into eqn (A3b) and taking A* =1 we obtain the usual equations of a string.

For our purposes we consider a homogeneous string which is characterized by the constitutive equation

r* = Pg*(a*) (A9)

where P is a constant havina the units of force and g* is a function to be specified. A particular form for g*
appropriate for a non-linear string which is force free in its reference configuration may be specified by

(AIO)

This form was used for the examples considered by Rosenau and Rubin[4].

APPENDIX B: A ROTATING CIRCULAR STRING

In this appendix we consider the motion of a circular string rotating in the e l -e2 plane about the e3 axis
with angular velocity /)*(t). The position vector r*(~,t) of material points on this string may be written in the
form

r* = r*(t)e,e~~ + O*(t))

2n
a*(t) =T r*(t)

(Bla)

(Bib)

where r* and a* are, respectively, the radius and stretch of the string in the present configuration, and e, is the
base vector defined by eqn (27a).

Using eqns (13), (14), (lS) and (18) of Rosenau and Rubin[4] and eqn (A9) of this paper, the motion of the
string is characterized by

(B2a)

(B2b)

where b] is a constant. In deriving eqn (B2a) we have retained the general form of g* given ineqn (A9). Also,
we note that the quantities a*, 0*, g* correspond to the quantities ai' 81, (I defiAod by Roeeaau aDd Jlubin[4].

Given a functional form for g* and imJiIl1 ~nditions Cor a*, d*, 8*,8'* tbecollStantb,isdctcrmined and
the ordinary dift'erential equations (B2) may be integrated to obtain a*(I) and 8*(1) which determine the motion
of the string.
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In this appendix we consider the motion of a straight string which is rotating in the e l -e2 plane with
constant ansuJar velocity w about the e3 axis. The end ~ = 0 is fixed at the orisin and the end ~ - L is froe of
contact force. The position vector r*(~. t) of material points on this string may be written in the form

r* = r*We,(9*(t))

or*
a*W =1[' 9*(t) =wt

(CIa)

(Clb.c)

where r* and a* are. respectively, the radial distance of the material point ~ from the fixed end and the stretch
of the string. Recalling eqns (13c~ (30) and (32) of Rosenau and Rubin[4], the function" is determined by the
integral

where the constant bit is siven by

rF[--2(7'"";'f:-:,dl "'J;';"II~2 =L - ~
o bit - ~f) (I + 2A.)312

p*w2L2
)12=_0__

P

(C2a)

(C2b)

(C3)

and where use has been made of the boundary condition that the string is free of contact force (g* .. 0) at ~ ... L.
In derivin. eqns (C2) and (C3) the specific form, eqn (AIO~ was uled for the function ,.. Also, we note that the
quantities a*, 9*," correspond to the quantities a2. 81, 12 of Rosenau and Rubin[4].

For our purposes, it is more convenient to write eqn (C2) in terms of a*(~). This can be done by lettia.
P= (1 + U)I/2 and usin. eqns (AIO) and (C3) to obtain

reI PdP (2)112 ( ~)
I [(a*(0))3 - P3]112 = '3 )I I - L . (C4)

For a Jiven value of)l the solution is obtained by evaluatin. eqn (C4) at ~ ... 0 and solvin. the resultin. equation
for a*(O). Then a*(~) can be obtained from eqn (C4) by intearation. To obtain r*(~ we integrate eqn (Clb) subject
to the boundary condition that the end ~ .. 0 is fixed at the orilin (r*(O) =0) to obtain

r*(~) =ra*(A.)dA.. (CS)

The solution of eqns (C4) and (CS) was evaluated numerically. To avoid the sin.ularity in eqn (C4) at
P=a*(O) we introduced the chan.e of variables

to rewrite eqn (C4) in the form

,,(~) =sin -1[(a*(~>''(12J
a*(O)}

(C6a,b)

(C7)rw
[ 3 JI/2 ( ~).l.cL) (sin ,,)11

3
d".. 14*(0) ,,1 - L .

Then a solution was obtained by: (a) auessin. a value of a*(O~ (b) evaluatin. the intearaJ in eqn (C7) usin. the
trapezoidal rule; and (c) iteratin& on the initial.ucss of a*(O) until eqn (C7) is satisfied for ~ ... O. Finally, g* and
r* were obtained from eqns (A 10) and (CS), respectively.


